HMO-EIP TREATMENT OF THE NMR PROTON CHEMICAL SHIFTS OF MONOSUBSTITUTED THIOPHENES

B. Kamieński^aand T.M. Krygowski^b

a) Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Polandb) Institute of Fundamental Problems of Chemistry, Warsaw University, Warsaw 22, Poland.

(Received in UK 30 October 1970; accepted for publication 8 December 1970)

In spite of extensive investigation of the proton NMR spectra of monosubstituted derivatives of thiophene¹⁾, no simple quantum-chemical interpretation of the substituent effects in this system is known. The only correlation observed²⁾ was a linear relation-ship between the chemical shifts of the corresponding protons in thiophenes and furans. The purpose of this paper is to demonstrate the application of simple HMO-theory to predict the substituent effects in thiophenes.

In our investigations we used HMO methods employing two sets of parameters for Coulomb and resonance integrals, i.e. that of Streitwieser³ and that of Derflinger and Lischka⁴, but the relations between pi-electron densities q_r and chemical shifts τ_r were far from linear. Much better correlations were obtained using the so-called HMO-EIP method^{5,6,7}. The pi-electron densities in the positions r are calculated according to the formula⁸:

$$q_{\mathbf{r}} = q_{\mathbf{r}}^{\mathbf{o}} + \pi_{\mathbf{r},\mathbf{t}} \, \mathrm{d} \alpha_{\mathbf{t}}(\mathbf{X})$$

where q_r^0 is the pi-electron density in position r of unsubstituted molecule, t is the position of substituent X, $\pi_{r,t}$ is the atom-atom polarisability and $d \alpha_t$ (X) is a correction to the Coulomb integral at the t position due to substituent X. Using the EIP-model within the HMO method we obtained:

$$q_r = q_r^o + \pi_{r,t} EIP(X)_t$$

where $\text{EIP}(X)_t$ is the value of the effective inductive parameter (a collection of these values has been published⁷⁾) of substituent X connected to the ring at position t. The results are collected in Table I for equation $\tau_r = a q_r + b$; R denotes the correlation coefficient. The experimental τ_r values for substituted thisphenes with substituents X = H, NO₂, CN, CH₃CO, J, Br, CH₃O, NH₂ were taken from the literature^{1,2)}.

For the protons in ortho- and para-type positions to the substituent (taking into account only the bonds being the hydrocarbon part of the molecule) the correlation coefficients are satisfactory or good according to the Jaffe classification⁹⁾. The HMO-EIP method is equivalent to the Hammett interpretation of the problem^{5,6,7)}

para-type positions

$\mathcal{I}_r = a q_r + b$				
Type of compounds	position	slope &	intercept b	correlation coefficient R
	3	4.83	- 2.47	0.962
2-X-derivatives	4	5.88	- 3.66	0.751
	5	9.78	~ 8.45	0.901
3-X-derivatives	2	5.95	- 3.97	0.969
	4	3.37	- 8.26	0.937
	5	4.20	- 2.03	0.791
2-X-derivatives, all positions		5.27	- 3.04	0.875
3-X-derivatives, all positions		4.71	- 2.51	0.900
2- and 3-X-deriv.all positions		4.94	- 2.72	0.879

Table I

when the para-constants of substituents are used. In fact¹⁰ such correlations between $\mathcal{T}_{r}(\mathbf{X})$ and $\mathbf{S}_{para}(\mathbf{X})$ were found to have correlation coefficients similar to those in Table I. This observation confirms the suggestion¹¹ that the substituent effects in thiophene are transmitted through hydrocarbon part of the molecule rather than through the long C-S bonds.

References

- (1) S.Gronowitz and R.A.Hoffman, <u>Arkiv Kemi 13,279(1958); 15,45(1959); 16,501</u> (1960); <u>16,515(1960); 16,539(1960); 16,563(1960);</u> S.Gronowitz, P.Moses and R.Hakansson, ibid. <u>16,267(1960);</u> S.Gronowitz, P.Moses and A.Hornfeldt, ibid. <u>17,237(1961);</u> S.Gronowitz and B.Gestblom, ibid. <u>18,513(1962);</u> S.Gronowitz and R.A.Hoffman, <u>Acta Chem.Scand</u>. <u>13,1687(1959);</u> S.Gronowitz, B. Gestblom and R.A.Hoffman, ibid. <u>15,1201(1961);</u> S.Gronowitz and A.Bugge, ibid. <u>22,59(1968)</u>.
- (2) H.Suhr, <u>Anwendungen der kernmagnetischen Resonanz in der organischen Che-</u> mie, Springer-Verlag, Berlin, (<u>1965</u>), p.217-221.
- (3) A.Streitwieser, Molecular Orbital Theory, J.Wiley, (1961), p.135.
- (4) G.Derflinger and H.Lischka, Monatsh.Chem. 100,1003(1969).
- (5) W.Kemula and T.M.Krygowski, Tetrahedron Letters, 5135(1968).
- (6) T.M.Krygowski, P.Tomasik, Bull.Acad.Polon.Sci., Ser.Sci.Chim. 18,303(1970).
- (7) W.Kemula and T.M.Krygowski, ibid. 15,479(1967).
- (8) C.A.Coulson and H.C.Longuet-Higgins, Proc.Roy.Soc. A193,447(1948).
- (9) H.H.Jaffe, Chem.Rev. 53, 191(1953).
- (10) T.M.Krygowski, unpublished results.
- (11) E.Scriven and P.Tomasik, <u>Application of Hammett Equation to the Heterocy</u>clic Systems, to be published.